Aker Clean Hydrogen

Handelsbanken's sustainability insight event – 17.11.2021

AKER CLEAN HYDROGEN

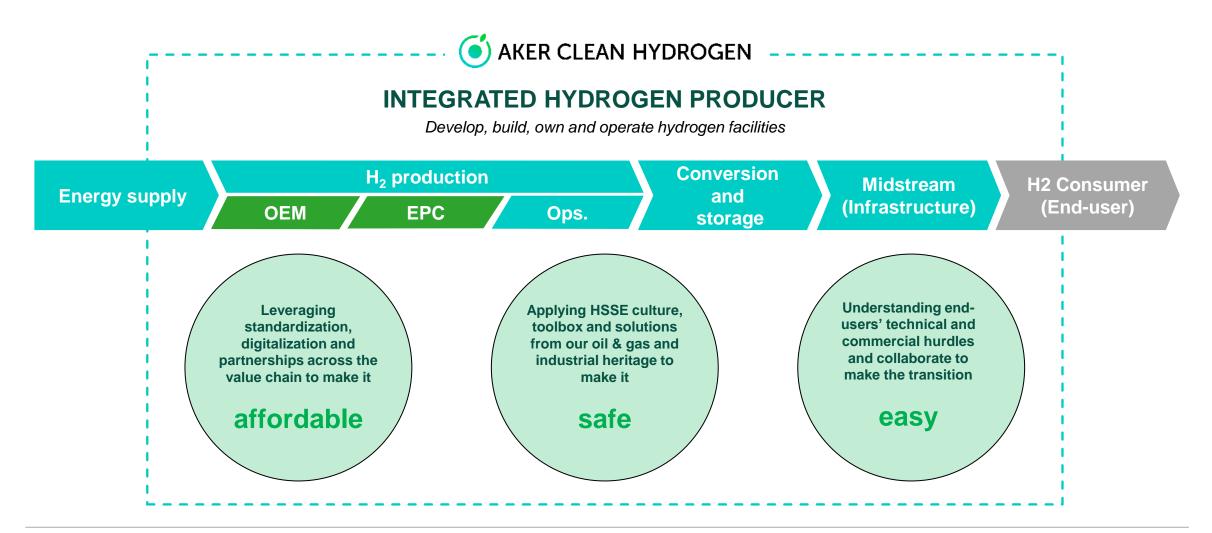
Aker Clean Hydrogen in brief

Integrated clean hydrogen producer

Develop, build, own, and operate hydrogen facilities

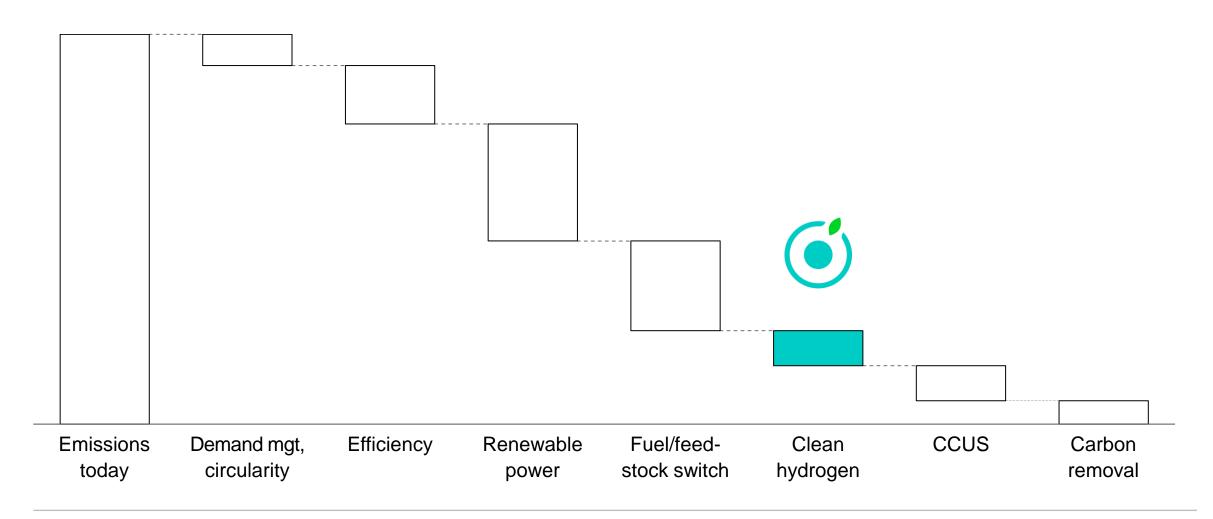
>1.8 GW net capacity project & prospect portfolio

Projects and prospects in Norway, Chile, and Uruguay



Target of 5.0 GW net installed clean hydrogen capacity in 2030

Meaningful impact of reducing **9.4 million** tons CO₂ emissions per year

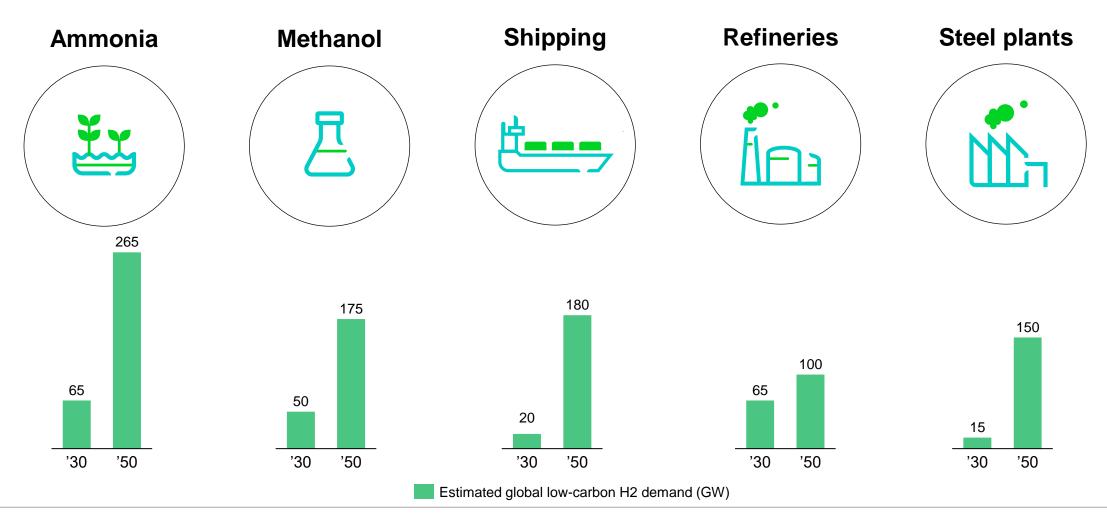


Affordable hydrogen made safe and easy Enabling efficiencies across the hydrogen value chain

Clean hydrogen a key lever to meet net zero

AKER CLEAN HYDROGEN

Power, industry, transport and buildings require hydrogen


Gt CO₂e of global GHG emissions by sector, 2019

Clean H2 key decarbonization lever

30%	21%	16%	16%	7%	11%
Oil		Rail		Others	Waste
Gas	Others	Shipping Air	Deforestation	Cooking	
Coal	Chemicals incl. ammonia	Heavy road		Water heating	
	Cement		Agriculture	Space heating	Fugitive
	Iron and steel	Light road			
Power	Industry	Transport	Land use	Buildings	Others

Targeted industrial clean hydrogen markets >200 GW in 2030 and >850 GW in 2050, representing a significant opportunity for Aker Clean Hydrogen

Hegra project: Developing Europe's largest industrial-scale green ammonia facility, removing ~800,000t of CO2 per year

Key partners

Project highlights

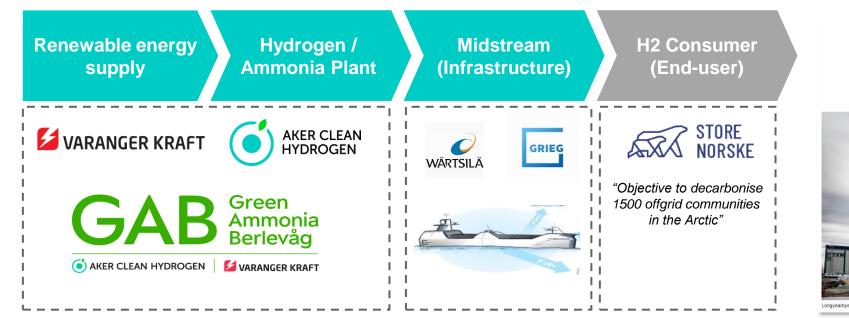
- HEGRA JV company established
- Joint commercial and execution team established

AKER CLEAN HYDROGEN

- Feasibility study progressing as planned
- Strong and good dialogue with stakeholders

Green Ammonia Berlevåg project: Green ammonia plant to decarbonize the arctic, removing ~200,000t of CO2 per year

	Period of expected start of construction Period of expected start of operations					
	2021	2023	2025	2027	2029	
Key						
Key	v partn	ers				
	v partn Co-dev partner	eloper	V A	ARANGER I	KRAFT	


Project update

Timing and milestons

- Technical feasibility study and concept phase completed – opportunity to expand to 200 MW
- Extended license deadline for 103 MW wind farm on Raggovidda
- LOI for ~300,000 ton ammonia per year signed ->3.5x times planned capacity
- Liv Monica Stubholt appointed chairman in project SPV, Green Ammonia Berlevåg AS

Example: Making ammonia easy for Longyearbyen

Statsbudsjettet 2022: Nullutslippsløsning for Svalbard Energiforsyningen til Longyearbyen på Svalbard skal baseres på nullutslippsdrivstoff, enten ammoniakk eller hydrogen fra 2025.

illkraftverk skal fases ut i 2023. Dieselmotorer som kan gå på ammoniakk skal sørge for at byen går fra kull til null.

9

ENERGILØSNING SVALBARD

EU Taxonomy hydrogen considerations

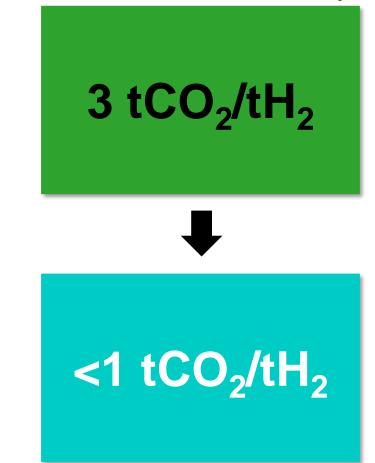
Activity	Criteria		Description		
	Production	<3 tCO ₂ /tH ₂	 Life-cycle GHG emissions Set at a level considered sufficient ambitious to ensure a substantial contribution to climate change mitigation 		
	Storage	 a. Construction of hydrogen storage facility b. Conversion of existing gas storage facility into hydrogen storage c. Operation of hydrogen storage facility 	•The hydrogen stored in the facility meets the criteria for production of hydrogen		
	Transport	Low or zero-emission emission transport criteria a. Freight transport services by road b. Freight water transport c. Road passenger transport	 Businesses that aim to classify their transportation of goods as sustainable, will have to use low carbon transport solutions. Cars, busses, trucks, trains, airplanes and ships will have to use batteries or hydrogen as fuel 		
Indirect effects					

EU Taxonomy – blue hydrogen assessment

The EU Taxonomy is technology neutral

Below 3 tCO₂/tH₂

The CO_2 captured is transported and stored underground in accordance with EU taxonomy activity 5.11 and 5.12



Life-cycle GHG emissions savings are calculated using the methodology referred to in Article 28(5) of Directive (EU) 2018/2001

Quantified life-cycle GHG emission savings are verified

EU Sustainable Taxonomy

Aukra Hydrogen Hub

ESG an integrated part of our business

ESG a key part of ACH:

- Key criteria in concept screening
- Clear rules in the Capital Value Process
- Integrated part in Project execution model
- Key criteria for selecting suppliers & partners
- Recruitment process
- Key criteria in M&A screening

ACH uniquely positioned in the hydrogen economy

Building early track record being involved in several pioneer projects

Solid in-house industrial expertise and know-how

Building on a strong partnership platform

4

Well positioned in Norway with several pieces of the hydrogen puzzle in place

Access to the industrial and commercial ecosystem in the Aker Group

